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Abstract

This paper presents a computational framework for quantifying aesthetics of Chinese ink wash and
applying them to generative models. We define differentiable metrics for the three core elements:
the compositional balance of “Liubai” (negative space), the calligraphic quality of “Bichu” (brush-
stroke), and the tonal diffusion of “Moyun” (ink wash). Using these metrics, we benchmark unpaired
image-to-image systems—CycleGAN, MUNIT, ChipGAN, and diffusion pipelines with control-
lable methods (Style LoRA, ControlNet-Tile, IP-Adapter)—on photo-to-ink transfer. Results show
a trade-off: diffusion excels at “Moyun” texture fidelity, while ChipGAN with explicit aesthetic
losses better preserves “Liubai” and “Bichu” structure. The study also highlights limitations of
generic image-quality metrics (e.g., FID) for artistic evaluation. We further validate implications for
phygital textile design via seamless-tiling tests and small-scale physical samples. Finally, we outline
a unified, material-aware scheme embedding fabric diffusion physics (Fick’s law) into a Physics-
Informed GAN objective to jointly optimize aesthetic fidelity and printability.

Keywords Ink Wash Aesthetics; Liubai Encoding; Generative Models; Textile Pattern Design; Physics-
Informed GANs

1 Introduction: The Intersection of Generative Al and Cultural Heritage

In recent years, Generative Artificial Intelligence (Generative Al) has become a transformative force, its
influence permeating from the technological domain into the deep structures of cultural and artistic cre-
ation!!]. As a core branch of Artificial Intelligence Generated Content (AIGC) technology, generative
models, especially Generative Adversarial Networks (GANs) and Diffusion Models, have evolved from
mere tools for imitating or replicating existing data into powerful engines capable of creating entirely
new, high-fidelity visual content!], Against this backdrop, the intersection of artificial intelligence and
cultural heritage preservation presents unprecedented opportunities. While traditional cultural heritage
preservation focuses on physical restoration, digital archiving, and documentation, Generative Al opens
up a new path: a shift from “passive preservation” to “active revitalization”[1].

By learning from vast amounts of historical images, texts, and 3D scan data, Generative Al can digitally
restore damaged artworks, reconstruct lost architectural monuments, and even bring static paintings to life
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through dynamic videos!!). This technology not only provides an unprecedented immersive experience for
global audiences to access and understand cultural heritage across time and space, but more importantly, it
can deeply learn and reproduce the inherent “generative rules” and “stylistic grammar” of a cultural form[1],
This means Al is no longer just a recorder of heritage but can become a participant in its inheritance and
re-creation. This study is situated at this exciting intersection, aiming to explore how to use Generative
Al to analyze, encode, and reinterpret Chinese ink wash painting, a non-material cultural heritage with

profound philosophical underpinnings.

1.1 The Unique Computational Challenges of Chinese Ink Wash Painting

Chinese ink wash painting, or “Gué Hua,” is far more than a simple painting style; it is a complex artistic
system that carries thousands of years of philosophical speculation, literati spirit, and aesthetic idealst].
Unlike the Western painting tradition, which pursues precise representation, light and shadow modeling,
and color filling, the core of Chinese ink wash painting lies in “xieyi,” which is to capture the inner essence,
vitality, and spiritual resonance (qiyun) of objects, rather than their superficial appearancel!l. To achieve
this, ink wash painters often abandon vibrant colors, relying instead on the purest elements: ink, water,
brush, and paper!!].

This artistic tradition is built on three core aesthetic pillars, each presenting unique challenges for
computational models'!). The first is Liubai (negative space): in ink wash painting, blank space is not
an unfinished or meaningless background but a “dynamic, generative energy”m. It originates from the
Daoist and Zen philosophies’ reverence for “emptiness” and “nothingness,” believing that “emptiness” is
where the potential for all things to emerge resides!!). The blank space in a painting is an “active absence,”
used to stimulate the viewer’s imagination, balance the composition, and ultimately create a profound
and ethereal “yijing” (artistic conception)['). The second pillar is Bichu (brushstroke): the lines in ink
wash painting are considered a direct expression of the painter’s spirit and emotion, emphasizing that
“calligraphy and painting share the same origin”[]]. Each stroke is required to contain strength, rhythm,
and emotion, conveying the structural integrity and vitality of the object through variations in dryness,
wetness, thickness, and speed!!]. The third pillar is Moyun (ink wash): this refers to the rich tonal layers and
natural diffusion effects produced by the interaction of ink and water on highly absorbent media like Xuan
paperm. From the darkest to the lightest ink tones, various techniques create a sense of depth, distance,
and atmosphere in the painting[l].

The philosophical depth and abstract nature of these principles have created what is known as the
“aesthetics-to-algorithm translation gap”™ how to formalize these qualitative, poetic, and metaphorical art
theories into a computable and optimizable mathematical language[l]. The core methodological contri-
bution of this study is that by constructing a novel set of metrics, we are not only able to perform post-hoc
evaluation of the generated results, but more importantly, these differentiable metrics can themselves serve
as loss functions for training future models. This marks a significant paradigm shift: from merely using
Al to generate art to building a computational system that can understand and execute aesthetic principles.
This makes our work not just a model comparison, but an exploration of the fundamental methodology
of computational aesthetics.

1.2 Research Questions and Core Contributions

Based on the challenges above, this study aims to answer the following core questions. Research Question
1 (RQ1): How can abstract aesthetic principles such as “Liubai,” “Bichu,” and “Moyun” be operational-
ized into a set of computable, quantitative metrics based on computer vision? Research Question 2 (RQ2):
How do different advanced unpaired image-to-image translation architectures (GANS vs. diffusion mod-
els) perform under these new metrics, and what trade-offs do they reveal between texture fidelity and
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compositional structure? Research Question 3 (RQ3): What are the implications of these research findings
for the practical application of generative art in “Phygital” textile design, particularly in seamless tiling and
material simulation?

To answer these questions, this paper makes the following three contributions. First, it proposes a novel
quantitative framework by proposing and validating a new set of differentiable metrics for quantitatively
evaluating the aesthetic quality of generated ink wash paintings, thus translating abstract aesthetics into
measurable visual properties and providing an objective benchmark for subjective evaluation in the field.
Second, it conducts a comprehensive empirical analysis, for the first time conducting a head-to-head com-
parison of architectures based on GANs (CycleGAN, ChipGAN, MUNIT) and diffusion models (Style
LoRA, ControlNet-Tile, IP-Adapter), using both standard metrics and the aesthetic metrics proposed in
this paper, providing valuable benchmark data and a deep understanding of the models’ capability bound-
aries for the field. Third, it provides an applied path for “Phygital” design by not only analyzing the suit-
ability of different model architectures for downstream textile applications (such as seamless tiling) but also
preliminarily verifying the correlation between digital metrics and real material properties through physi-
cal experiments, and ultimately proposing a unified framework of Physics-Informed Generative Adversarial
Networks (PI-GANG) to provide a technical roadmap for achieving truly “material-aware” generation.

2 Related Work

2.1 Evolution of Unpaired Image-to-Image Translation

Unpaired image-to-image translation aims to learn the mapping between two different visual domains
without requiring one-to-one corresponding training samples, which has laid the foundation for process-
ing artistic forms like Chinese ink wash painting that lack “photo-painting” paired datalll.

A foundational work in this area is CycleGAN, which is a milestone in the field, with its core innovation
being the introduction of “cycle consistency loss”(1). The model includes two pairs of generators and
discriminators. The generator G:X~Y translates an image from a source domain X (e.g., photos) to a
target domain Y (e.g., ink wash paintings), while the generator F:Y—X performs the reverse translation.
The cycle consistency loss ensures that an image, after undergoing a forward and a reverse translation,
can be substantially restored to its original state, i.e., F(G(x))Fx, and vice versalll. This constraint forces
the model to preserve the original content structure while changing the style, making it the foundational
architecture for many subsequent models, including ChipGANm.

As a conceptual evolution of CycleGAN, models like MUNIT and DRITB! assume that the latent
representation of an image can be decomposed into a domain-invariant “content code” and a domain-
specific “style/attribute code”™. The translation process thus becomes a re-combination of the content
code from the source domain image with a style code sampled from the target domain’s style space. This
method allows for the generation of multiple possible outputs from a single input (i.e., multimodal trans-
lation), providing greater flexibility for stylizationm. From CycleGAN to MUNIT/DRIT, and then to
ChipGAN, the core subject of this study’s analysis, we can observe an evolutionary path of “style” control.
CycleGAN learns style as a whole; MUNIT/DRIT attempts to decouple a generic “style” from “content”;
while ChipGAN goes a step further, attempting to decompose “style” itself into multiple explicit aesthetic
principles derived from art theory (Liubai, Bichu, Moyun), and constrains them through customized loss
functions! .

2.2 Generative Paradigms in Art Creation: GANs vs. Diffusion Models

After ChipGAN, researchers proposed other models to generate or transform Chinese paintings. For
example, HA-GAN uses a hybrid attention mechanism to better extract features of landscape paintings
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from multiple dimensions, while SAPGAN mimics the creative process of human painters by constructing

»[11, These models address the generation of ink

a two-stage framework of “first composing, then inking
wash paintings from different perspectives, contrasting with ChipGAN’s method based on explicit aesthetic
constraints!.

As the latest paradigm in the field of image generation, diffusion models are notable for the high fi-
delity and rich detail of the images they produce[l]. Their architecture has significantly improved from SD
1.5 to SDXL, the latter featuring a larger UNet backbone and a second text encoder, natively supporting
higher-resolution image generation and better understanding of complex prompts[4]. Low-Rank Adap-
tation (LoRA) technology has made it possible to efficiently fine-tune these massive pre-trained models,
allowing them to adapt to specific artistic styles[l]. To address the challenge of structural control in dif-
fusion models, a series of controllable generation techniques have emerged. ControlNet-Tile guides the
generation process by using low-resolution or degraded images as control signals to fill in details while
maintaining the overall composition, which makes it very effective in improving global consistency and
generating seamless tiling patterns[5]. IP-Adapter introduces a decoupled cross-attention mechanism that
allows the model to use images as prompts (Image Prompt), injecting the style or content features of a
reference image into the generation process, achieving more intuitive multimodal controll8l, These ad-
vanced control methods form the modern baseline for comparison with traditional GAN architectures in

this study.

2.3 Computational Methods for Chinese Ink Wash Painting

Attempts to combine computer graphics with Chinese ink wash painting have a long history, with early
work focusing on non-photorealistic rendering (NPR) based on rules or physical simulations!']. With the
rise of deep learning, data-driven generative methods began to dominatel'). The core analytical subject of
this study, ChipGAN[7], is one of the pioneering works in this field. It did not treat ink wash painting as
a single, generic “style,” but rather broke it down into three operable core aesthetic principles—“Liubai,”
“Bichu,” and “Moyun”—and designed specific computational constraints for each principle[l]. The focus
of this study is to examine, from an evaluation perspective, the extent to which these data-driven methods
have successfully translated the abstract aesthetic principles of ink wash painting into algorithmic reality,
and to establish a set of objective, reproducible metrics for it.

3 An Aesthetic-Aware Quantitative Framework

The core methodological contribution of this study is the proposal of a novel set of metrics aimed at translat-
ing the three core aesthetic principles of ink wash painting—Liubai, Bichu, and Moyun—from qualitative
artistic concepts into computable quantitative indicators. The motivation for this is to systematically reap-
ply mature technologies from various computer vision fields to the context of art criticism, thereby moving
beyond generic metrics like FID that may not align with artistic goalsm.

3.1 Quantifying “Liubai”: Metrics for Compositional Balance and Spatial Distribution

In ink wash painting, “Liubai” is not a passive blank space, but an active compositional element that creates
an artistic conceptionm. To quantify this concept, we propose two metrics.

The first metric is Whitespace Distribution Statistics. The algorithm first binarizes the grayscale image
using an adaptive Otsu thresholding method to classify pixels into foreground and background (whites-
pace)l!]. Subsequently, the Connected Component Labeling (CCL) algorithm is applied to identify and
count all independent white areas in the image[g]. To enhance robustness, tiny components with an area
less than 0.1% of the total image area are treated as noise and removed(!. The output indicators are (1)
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the number of connected components, N; (2) the ratio of the area of the largest connected component
to the total image area, A4/ Aimg; and (3) the average area of connected components, A. The aesthetic
assumption is that a well-composed ink wash painting should have its “Liubai” forming a few large, co-
herent areas rather than numerous trivial, scattered spots. Therefore, a lower N, and a higher A4,/ Aimg
indicate a higher quality of Liubai application.

The second metric is Feature Congestion (FC). We hypothesize that the Daoist philosophical pursuit
of balance between void and solid corresponds perceptually to lower visual clutter. For this, we introduce
the Feature Congestion metric proposed by Rosenholtz et al.[%l. This metric was initially used to evaluate
the visual clutter of user interfaces or complex scenes, with its core idea being to assess how difficult it
is to add a new attention-grabbing element to an image[g]. In implementation, the algorithm calculates
the covariance of local features such as color, contrast, and orientation at multiple scales and integrates this
information into a single congestion valuel'9), The output indicator is the average feature congestion of the
image, with lower values indicating greater visual harmony and transparency. The aesthetic assumption is
that a successful application of “Liubai” in an ink wash painting should result in a low feature congestion,
reflecting its compositional balance and ethereal feel.

3.2 Quantifying “Bichu”: Metrics for Line Quality and Calligraphic Expressiveness

“Bichu” is the “bone structure” of ink wash painting, reflecting the artist’s strength and emotionl], We
quantify it through a two-step process: first, extracting the lines, and then analyzing their geometric and
textural properties.

For line extraction, to comprehensively capture line information at different levels, we use two com-
plementary edge detectors!!l. The first is Holistically-Nested Edge Detection (HED): as a deep learning
model, HED excels at extracting semantically meaningful object contours in an image, making it very
suitable for capturing the main structural lines of a painting[“]. The second is Difference of Gaussians
(DoG): as a classic band-pass filter, DoG is very effective at capturing fine textural lines and artistic-style
edges, suitable for representing the calligraphic details within a brushstrokel'2], The final edge map is the
union of the results from both methods.

The third metric is Line Curvature Histogram Statistics. After extracting the binarized line map,
for each continuous sequence of boundary points, we estimate its curvature x(s) by calculating the local
second-order differences!!3. By constructing a histogram of all curvature values, we can analyze the overall
smoothness of the lines. The output indicators are the standard deviation o, and the 95th percentile of the
curvature distribution. The aesthetic assumption is that high-quality generated brushstrokes should exhibit
smooth, controlled curves rather than noisy or unnatural jitters. Therefore, a lower o,, implies smoother
lines.

The fourth metric is Gradient Entropy (GradEn). To quantify the “calligraphic feel” and textural rich-
ness of the brushstrokes, we calculate the Shannon entropy of the gradient directions within the neigh-
borhood of the line map[M]. This metric quantifies the structural complexity and information content of
the image by analyzing the distribution of gradient directions. The output indicator is a single gradient
entropy value. The aesthetic assumption is that a brushstroke with rich details and calligraphic rhythm
will have more complex changes in gradient direction, and thus a relatively higher gradient entropy value.

3.3 Quantitying “Moyun”: Metrics for Tonal Gradation and Diffusion Effects

“Moyun” is the aesthetic appeal produced by the physical interaction of ink and paper, with its core being
smooth tonal transitions and natural edge diffusion!].

The fifth metric is Edge Penumbra Width. We analogize the physical process of ink diffusion on paper
to the “penumbra” phenomenon in optics and medical imaging, which is the blurry transition zone at an
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edgel'l. For the main edges in the image, we sample the intensity profile along their normal direction and
measure the pixel distance required for the pixel value to rise from 10% to 90% (wloﬁgo)[ls]. The output
indicator is the average penumbra width calculated after randomly sampling multiple edge profiles in the
image. The aesthetic assumption is that the key to the “Moyun” effect lies in the softness and diffusion of
the ink edges, so a wider penumbra width directly quantifies a stronger Moyun effect.

The sixth metric is the Low/High-Frequency Energy Ratio. To evaluate the overall tonal atmosphere
of the painting, we perform a 2D Fast Fourier Transform (FFT) on the grayscale image to obtain its
amplitude spectrum!'®]. Then, we calculate the ratio of the energy in the center of the spectrum (low-
frequency region, with a radius threshold r. set to 15% of the maximum radius) to the energy at the edges
of the spectrum (high-frequency region). The output indicator is the ratio Ejyy/Epigh. The aesthetic
assumption is that a painting with a strong “Moyun” is characterized by smooth, large-area tonal changes,
so its low-frequency energy should be much higher than the high-frequency energy, which represents
details and sharp edges. A higher ratio means a stronger “Moyun” feel.

Table 1: Computational Metrics Framework for Ink Wash Painting Aesthetic Principles

Aesthetic Principle Artistic Evaluation Goal Proposed Metric Core Computer Vision Tech-
nique
Liubai (Negative Space) Composition, balance, artistic 1. Whitespace Distribution Statis- 1. Connected Component Labeling
conception tics (ccr)
2. Feature Congestion (FC) 2. Statistical Saliency/Covariance
(Rosenholtz)
Bichu (Brushstroke) Line quality, calligraphic style 1. Line Curvature Histogram 1. HED/DoG + Curvature Analysis
Statistics 2. Gradient Direction Entropy
2. Gradient Entropy (GradEn)
Moyun (Ink Wash) Tonal gradation, ink diffusion 1. Edge Penumbra Width 1. Edge Profile Analysis
(w10-90) 2. Fourier Transform
2. Low/High-Frequency Energy 3. Perceptual Color Science
Ratio

3. CIEDE2000

The seventh metric is CIEDE2000 Color Difference. For ink wash styles that include light colors, we
do not use simple RGB distance to evaluate color fidelity, but rather the CIEDE2000 color difference for-
mulall, This formula is specifically designed so that its calculation results are more consistent with human
visual perception, allowing for a more accurate measurement of whether the colors of the generated image
conform to the tonal range of the target style domain. The output indicator is the average CIEDE2000
distance from the tonal prototypes of the target domain. The aesthetic assumption is that a lower color
difference value indicates better color fidelity.

The table 1summarizes the aesthetic quantification framework proposed in this study, clearly showing
the mapping relationship from abstract aesthetic principles to specific computational metrics.

4 Experimental Design and Methodology

4.1 Datasets, Licensing, and Ethical Considerations

To ensure a fair comparison, all models were trained and evaluated on a unified dataset.

The source domain (X - Photos) consists of a dataset of 5,000 high-resolution photographs, with themes
aligned with traditional ink wash painting subjects such as mountains, rivers, forests, and birds!. The
images were primarily sourced from public domain resources like Unsplash[m and ImageNetm.

The target domain (Y - Ink Wash Paintings) is a diverse dataset of 2,000 high-quality Chinese ink wash
paintings. This dataset covers various themes (landscapes, flowers and birds, figures) and styles, sourced
from public datasets on Zenodol'8! and Kaggle[lg], as well as online museum collections!.
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For data preprocessing, all images were cropped and resized to a resolution of 512x512 pixels. The
dataset was split into an 80% training set and a 20% test set, with no paired data used during training!'l.

Regarding licensing and ethical statements, this research strictly adheres to the terms of use of all data
sources. The Unsplash Lite dataset permits non-commercial research usel!7), and the datasets on Zenodo
and Kaggle are accompanied by clear open licenses (e.g., CC0, CC-BY)['8]. When using images from
museum collections, only works that have entered the public domain were included. This study acknowl-
edges that the dataset used may have biases in terms of period and genre, which could affect the generative
style of the models. We advocate for future work to collaborate with cultural institutions to build more
representative and authorized datasets, in line with UNESCO’s recommendations on Al ethics, to ensure
respect and responsible use of cultural heritage[zo].

4.2 Comparative Models and Implementation Details

This study selected a variety of representative unpaired image-to-image translation models for comparison,
covering paradigms from classic GANs to modern controllable diffusion models.

The GAN baselines are CycleGAN, a widely used baseline model employing a standard ResNet-based
generator and PatchGAN discriminator architecturel'l;: MUNIT, representing the disentangled represen-
tation approach, with its architecture decomposing an image into content and style codes!l; and Chip-
GAN, representing the injection of aesthetic priors, for which we faithfully reproduced its specific archi-
tecture including brushstroke and ink wash losses! .

The diffusion model baselines are Diffusion + Style LoRA, using pre-trained Stable Diffusion v1.5 and
SDXL 1.0 models, with a style LoRA fine-tuned on our ink wash painting training setl!]. The LoRA
hyperparameters (rank=16, alpha=16, lr=1e-4) were determined through a grid search. ControlNet-Tile,
built on SD 1.5 + LoRA, uses the lllyasviel/control_v11fle sd15_tile model, with a low-resolution version
of the input image as a control signal to enhance global structural consistency!l. TP-Adapter, also built on
SD 1.5 + LoRA, uses the IP-Adapter, which takes the input image as an image prompt to enhance content
preservation capabilitiesm.

For implementation details, all diffusion model inferences were performed with uniform settings (sam-
pler=DPM++ 2M, CFG=7, steps=30) to ensure a fair comparison. All training and evaluation scripts, con-
figuration files, random seeds, and model weights (or LoRAs) will be provided through a public code
repository to ensure the full reproducibility of the researchl!].

4.3 Evaluation Protocol

The evaluation protocol consists of four parts: quantitative metrics, qualitative comparison, user study, and
downstream application testing.

For quantitative evaluation, we randomly selected 1,000 photos from the test set and performed style
transfer using all models. Then, we calculated the following metrics for all generated images: Standard
metrics, including Fréchet Inception Distance (FID), Learned Perceptual Image Patch Similarity (LPIPS),
and CLIP score (using prompts like “a Chinese ink wash landscape painting”)[!]. Aesthetic metrics included
the full set of aesthetic metrics proposed in Section 3.

For qualitative evaluation, we will present side-by-side comparisons of the generation results of each
model on different input photos to visually compare their effects and analyze their respective success and
failure cases(!).

For the user study, we recruited 60 participants (30 with an art/design background, 30 without)!!].
In a double-blind test, participants rated the randomly presented generated images on a 1-5 Likert scale
(dimensions: overall quality, ink wash style consistency, artistic appeal) and made pairwise comparisons
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(dimensions: Liubai composition, brushstroke quality). A Latin square design was used to balance the
presentation order to control for order effects!!],

For the objective seamless tiling test, to evaluate the usability of the patterns in textile applications,
an objective tiling consistency test was introduced™. The Offset Test involved translating the generated
image along the x and y axes by half its width and height and calculating the Structural Similarity Index
(SSIM) between the original and the translated image!?'l. An SSIM value closer to 1 indicates less visual
discontinuity at the seams. The Seam Gradient involved calculating the average gradient magnitude in the
central seam area of the translated image. A lower value indicates a smoother seam.

4.4 Statistical Analysis

To ensure the robustness of our conclusions, this study employed rigorous statistical analysis methods!],
All reported means are accompanied by 95% confidence intervals (CI) calculated using 1,000 bootstrap
iterations. Performance differences between models were assessed using permutation tests (10,000 itera-
tions), with the Benjamini-Hochberg procedure to control the false discovery rate (FDR). The relation-
ship between subjective ratings from the user study and objective metric indicators was analyzed using the
Spearman rank correlation coefficient (p). The inter-rater reliability of the user study was evaluated using
the Krippendorff” s alpha () coefficient, with a > 0.67 considered acceptable consistency[22],

Table 2: Results of Models on Standard and Aesthetic Metrics (mean + 95%CI; |/1 indicates better direc-

tion)

Model FID| LPIPS, CLIP} Neld Apmaz/AT  ECl oxd GradEnt  Penumbrat L/H Ratiot
CycleGAN 1254431  0.4840.02  0.26£0.01 452428  0.31+£0.03 7.840.4 0.15+0.01  2.840.1 31402 12.540.9
MUNIT 1189429  0.4540.02 0.2740.01 381425 0.3540.03 72403  0.1340.01  3.040.1 3.540.2 14.1£1.0
ChipGAN 1102427  0.4340.02 0.2840.01 2254197 0.48+0.04" 594037 0.1040.01" 354017 42403 16.84+1.2
DifftLoRA 957425  0.36+0.01" 03140.01" 51.643.0 0.2840.03 8.5+0.4 0.1840.02  2.540.1 5.840.3" 22,4415
Real Ink N/A N/A N/A 189415  0.5240.05 55403  0.0940.01  3.7+0.2 6.240.4 25.1+1.8

" Note: Statistical results are based on 1000 test images. CI was calculated using the BCa bootstrap method (n=1,000). ** p<0.01 indicates significancly
better performance than all other models in permutation tests (10k iterations). FC: Feature Congestion; GradEn: Gradient Entropy; Penumbra: Edge
Penumbra Width; L/H Ratio: Low/High-Frequency Energy Ratio.

5 Results and Analysis

5.1 Quantitative Evaluation: Revealing the Trade-off between Structure and Texture

The quantitative results of the experiment are summarized in Table 2. The data show a clear trend, con-
firming our core hypothesis: different generative architectures have their own focuses in simulating the
different aesthetic dimensions of ink wash painting, with a fundamental trade-off between structural con-
trol and texture fidelity (Table 2).

From the results, we can observe the texture advantage of diffusion models: The Diffusion+LoRA
model performed best on metrics related to “Moyun,” with its Edge Penumbra Width and Low/High-
Frequency Energy Ratio being closest to the reference baseline of real ink paintings, while also achieving
the best scores on LPIPS and CLIP. This indicates its unparalleled ability in generating smooth, delicate
textures and tonesl!]. In contrast, ChipGAN showed a structural advantage: ChipGAN performed out-
standingly on metrics related to “Liubai” and “Bichu.” It had the lowest number of whitespace components
and feature congestion, indicating that its generated compositions were the most balanced and harmonious.
At the same time, its lower standard deviation of line curvature and higher gradient entropy suggest that
its generated lines were both smooth and rich in detail, more in line with calligraphic aesthetics!!], The
limitations of standard metrics were also apparent: The FID score did not show a strong correlation with
aesthetic quality. Although the diffusion model visually generated extremely realistic ink textures, its lower
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scores on structural aesthetic indicators may be due to occasional distortions in its content structure, which
are penalized by the Inception network pre-trained on realistic photost']. This validates the necessity of
our newly proposed aesthetic metric framework.

5.2 Qualitative Evaluation and Failure Case Analysis

Qualitative visual comparisons further support the conclusions of the quantitative analysis. The images
generated by the diffusion model have a rich and realistic ink wash texture, but sometimes distort or ignore
the fine structures of the input photo, resulting in what is known as “subject fracture” or “pseudo-Liubai.”
ChipGAN, on the other hand, preserves the subject’s outline well and redraws it with stylized brushstrokes,
resulting in more considered compositions, but its rendering of ink wash realism is not as good as that of
the diffusion model. The performance of CycleGAN and MUNIT falls between these two, with MUNIT
sometimes producing a more generic “artistic” effect rather than a specific ink wash style due to its style
disentanglement mechanisml!,

5.3 User Study: Correlating Objective Metrics with Human Perception

The user study results (Table 3) provide validation at the human perception level for the quantitative analy-
sis. The overall consistency coefhicient, Krippendorf’s c, was greater than 0.7 for all dimensions, indicating

high reliability of the ratings.

Table 3: User Study Results (Likert 1 5, mean & 95%Cl; « is KrippendorfFs alpha for inter-rater reliability)

Dimension CycleGAN MUNIT ChipGAN Diff+LoRA a

Overall Quality 2.840.2 3.140.2 3.840.2 424017 072
Ink Style Fit 3.040.2 3.340.2 4.140.2 434017 0.75
Artistic Appeal 29402 32402 39402 414+017 071
Liubai Composition (Art Group) ~ 2.540.3 29403 444027 35403 078
Bichu Quality (Art Group) 2.7+0.3 3.0£0.3 45+0.2" 3.3£0.3 0.81

" Note: N=60 (30 art/30 non-art). ** indicates significantly better than the next best at p<0.01 level.

The user study results show that in terms of “Overall Quality” and “Artistic Appeal,” the diffusion
model had a slight advantage, with participants generally appreciating the realism of the textures it gener-
ated. However, when asked to specifically evaluate “Liubai Composition” and “Bichu Quality,” participants
with an art background significantly preferred the results generated by ChipGAN (1], Spearman correla-
tion analysis showed that our aesthetic metrics (such as FC, o,;) had a much higher correlation with the
expert group’s ratings (p > 0.75) than the FID’s correlation with expert ratings (p < 0.4), which strongly
demonstrates the effectiveness of the new metric framework.

5.4 Ablation Study: Deconstructing ChipGAN’s Aesthetic Loss Functions

To verify the effectiveness of the customized aesthetic loss functions in ChipGAN, we conducted an abla-
tion study. The experimental results showed that when the brushstroke loss (Lpyushstroke) Was removed, the
model’s curvature standard deviation o, score significantly worsened; when the ink wash loss (Linkwasn)
was removed, the edge penumbra width score dropped sharply. When both were removed (the model
degenerated into a standard CycleGAN), all aesthetic metrics performed poorly!!l. This provides direct
causal evidence for the effectiveness of the “aesthetics-to-algorithm translation,” proving that injecting do-
main knowledge through carefully designed loss functions can guide the model to learn specific artistic
style features.
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6 Application in “Phygital” Textile Design: From Pixels to Patterns

6.1 Objective Evaluation of Seamless Tiling Capability

In textile design, the seamless tiling of patterns is a prerequisite for industrial production[l]. We conducted
an objective tiling usability test on the results generated by each model, and the results are shown in Table
4,

Table 4: Tiling Consistency and Seam Metrics

Method Offset-SSIMT  SeamGradient]  Pass Rate (SSIM>0.8)1
ChipGAN + Post-processing 0.72+0.04 15.8+1.2 28%
Diff+LoRA + Post-processing 0.6540.05 18.24+1.5 15%
ChipGAN + Circular Convolution 0.884-0.03 8.1+0.9 85%
ControlNet-Tile 0.940.02" 5.340.6" 96% "

™ Note: Pass rate refers to the proportion of images in the test set that achieved acceptable tiling quality
(Offset-SSIM > 0.8). ** indicates significantly better than other methods.

The results indicate that models with stronger structural control are more likely to generate patterns
suitable for tiling. The output of the untreated ChipGAN, after simple post-processing (such as Poisson
blending), had a better tiling effect than the more structurally unstable diffusion model. However, the
real breakthrough came from introducing periodic constraints during the generation process. A variant
of ChipGAN trained with circular convolution performed excellently, while ControlNet-Tile, with its
strong control over the global layout, generated almost perfect seamless patterns, with its objective metrics
far exceeding those of other methods. This provides a clear technical path for the industrial application of
Al-generated patterns.

6.2 Connecting Digital and Physical: Preliminary Validation of Material-Awareness

When digital patterns are printed onto real fabrics, their final appearance is greatly influenced by the
physical properties of the fabricll. To verify the connection between our digital metrics and real material
properties, we conducted a preliminary physical experimentm.

First, for physical calibration, we dripped an equal amount of ink onto three real fabrics: silk, cotton,
and linen. After drying, we took high-resolution photos of the ink stains. Through image analysis, we
measured the actual “edge penumbra width” of the ink stains on each material. The results showed that
silk had the smallest penumbra width (sharpest edges), cotton had the largest (most noticeable blurring),
and linen was in between.

Second, for digital-physical mapping, we built a simple regression model that maps the material type
to a target penumbra width value.

Third, for pre- and post-validation, we used this model to guide a controllable generation model (such
as a diffusion model with a specific LoRA) to generate digital patterns with a “silk feel” (narrow penumbra),
a “cotton feel” (wide penumbra), and a “linen feel” (medium penumbra), respectively. These patterns were
then digitally printed onto the corresponding real fabrics.

The results showed that the average color difference AE*ab between the printed products and the
digital predictions, as measured by a colorimeter, was less than 3.0, indicating high color fidelity. Re-
measuring the edges of the printed products, their penumbra widths were highly correlated with our preset
target values (R? > 0.9). Although this proof-of-concept experiment was small in scale, it established for
the first time a closed-loop link from the abstract “Moyun” aesthetic to the computable “penumbra width”
metric, and further to the predictable printing effect on real fabrics. It demonstrates that our aesthetic
metric framework can be used not only for evaluation but also as a “digital twin” tool to guide design for
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specific physical media.

7 Discussion and Future Directions

7.1 The Structure-Texture Trade-off in Generative Art

The findings of this study reveal a fundamental trade-off in current generative models for art creation:
GANSG, especially those with injected domain knowledge (like ChipGAN), excel in structure and com-
position control, while diffusion models dominate in texture and pixel-level realism. This is not a simple
conclusion of one model being better than another, but a profound design choice issue. The future di-
rection may not be to find a single model that perfectly balances both, but to build a hybrid, multi-stage
creative workflow. Designers could use GANs or ControlNet to establish a strong compositional skeleton
(ensuring “Liubai” and “Bichu”), and then use the inpainting or img2img capabilities of diffusion models
to render high-quality textures on this skeleton (achieving “Moyun”). This “human-Al collaboration” or
“model collaboration” paradigm will be key to the development of future creative Al tools.

7.2 The “Authenticity Paradox” of AI-Generated Cultural Heritage

The findings of this study raise profound discussions about the “authenticity” of Al-generated artworks(1].
Our framework suggests that “authenticity” should not be measured solely by whether it is a replica of an
“original,” but by whether it faithfully adheres to the inherent “generative grammar” and aesthetic princi-
ples of the art form. From this perspective, a successful generative model is a “decoding” and “re-encoding”
of a cultural gene, a continuation of culture rather than a forgerylll. However, this also brings the risk
of aesthetic homogenization: if a large number of models are trained on the same limited set of “master-
pieces,” their outputs may converge, producing a large number of stylistically similar “derivatives” that
lack true innovation, forming an “algorithmic average aesthetic”!]. The key to solving this problem lies
in building more diverse and inclusive cultural datasets and encouraging models to explore the boundaries
of style rather than just imitating the center.

7.3 Limitations and Future Framework: Physics-Informed Generative Adversarial Networks
(PI-GANs)

This study has some limitations, such as the limited scale and diversity of the dataset. A more fundamental
limitation is that the current workflow separates the generation of aesthetic patterns from the simulation of
physical materials into two independent stages!'l. To overcome this bottleneck, we reiterate and expand on
the future research direction proposed in the original manuscript: building a Physics-Informed Generative
Adversarial Networks (PI-GANS) for textile pattern generation!),

The core idea of PI-GAN:G is to directly integrate known physical laws (usually expressed as partial
differential equations, PDEs) as strong prior knowledge into the neural network’s loss function!®!. We

envision a unified PI-GAN framework with a total loss function L as follows:
L= Ladv + )\cychyc + )\aesLaesthetic + )\prhysics

Here, the first two terms are the standard adversarial and cycle consistency losses. Lestnetic is the weighted
sum of the aesthetic metrics proposed in this study, used to ensure artistic style. The new core term,
Lyhysics> is the physical residual loss. The diffusion process of dye in porous media like fabric can be
described by Fick’s second law of diffusion24, Its simplified form is:

oC

=~ _wv.(D
5 =V (DeprVC)
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where C is the dye concentration (corresponding to image grayscale), and Dy is the effective diffusion
coefficient, a macroscopic parameter related to material properties such as porosity e and tortuosity x[2].
Under a steady-state approximation, the physical loss can be defined as the difference between the grayscale

curvature of the generated image I,.,, and the value predicted by the physical law:

Lphysics = HVQIQen - f(Deff(fa X))Hg

In this framework, the user can input the physical parameters of a specific fabric (e.g., silk, cotton) (D),
and the generator, during training, must not only learn the aesthetics of ink wash painting but also ensure
that its generated “Moyun” effect (i.e., the local grayscale curvature of the image) conforms to the physical
diffusion laws for that specific material. This will completely change the existing two-stage workflow,
achieving an end-to-end unification of aesthetic generation and physical simulation, which is a key step
towards truly “material-aware” generative art.

8 Conclusion

This study has achieved a series of important results through an in-depth analysis of the problem of us-
ing generative models to create Chinese ink wash style textile patterns. First, the core contribution of
this study is the proposal of a novel computational framework that successfully translates abstract Eastern
aesthetic principles such as “Liubai,” “Bichu,” and “Moyun” into a set of concrete, measurable computer
vision metrics. This framework provides the necessary tools for objectively evaluating culturally oriented
generative art, effectively bridging the cognitive gap between art philosophy and computational science.

Second, through comprehensive empirical comparisons, this study reveals a fundamental trade-off in
the simulation of ink wash style by current mainstream generative architectures (GANs and diffusion mod-
els). Diffusion models have a significant advantage in generating realistic ink textures and tonal gradations,
but they fall short in maintaining the structural integrity of the content and the artistic quality of the com-
position. In contrast, GAN models with explicit aesthetic constraints (such as ChipGAN) perform better in
preserving compositional balance and generating lines with a calligraphic feel. This finding has important
guiding significance for future model developers: merely pursuing pixel-level realism may not be enough
to capture the essence of an artistic style; control over structure and content is equally crucial.

Finally, this study combines technical analysis with practical applications, exploring the implications of
these findings for the “Phygital” textile design process. We argue that a complete generative system must
not only consider aesthetic expression but also address engineering challenges such as seamless tiling and
material simulation. Based on this, we propose the construction of a unified Physics-Informed Generative
Adversarial Networks (PI-GANGs) as a future research direction, aiming to achieve end-to-end, material-
aware pattern generation.

In summary, applying generative Al to the design of traditional ink wash style textiles not only brings
innovative design tools to the textile industry but also opens up a vibrant new path for the protection and
revitalization of intangible cultural heritage. It demonstrates that artificial intelligence can go beyond the
role of a recorder to become a bridge connecting tradition and the future, art and technology, and the
spiritual and the material, continuing and glorifying ancient cultural wisdom in a new form in the digital
agem.
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